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ABSTRACT 

Background: Genome-wide expression profiling is increasingly being used to identify 

transcriptional changes induced by drugs and environmental stressors. In this context the TG-

GATEs project (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system) 

generated transcriptional profiles from rat liver samples and human/rat cultured primary 

hepatocytes exposed to more than 100 different chemicals.  

Objectives: To assess the capacity of the cell culture models to recapitulate pathways induced 

by chemicals in vivo, we leveraged the TG-GATEs dataset to compare the early transcriptional 

responses observed in the liver of rats treated with a large set of chemicals to those of cultured 

rat and human primary hepatocytes challenged with the same compounds in vitro.  

Methods: We developed a new pathway-based computational pipeline that efficiently 

combines gene set enrichment analysis (GSEA) using Reactome pathways and biclustering to 

identify common modules of pathways that are modulated by several chemicals in vivo and in 

vitro across species.  

Results: We found that chemicals induce conserved patterns of early transcriptional responses 

in in vitro and in vivo settings, and across human and rat. These responses involved pathways 

of cell survival, inflammation, xenobiotic metabolism, oxidative stress, and apoptosis. 

Moreover, our results support TGF-beta receptor signalling pathway as a candidate biomarker 

associated with exposure to environmental toxicants in primary human hepatocytes.  

Conclusions: Our integrative analysis of toxicogenomics data provides a comprehensive 

overview of biochemical perturbations affected by a large panel of chemicals. Furthermore, we 

show that the early toxicological response occurring in animals is recapitulated in human and 

rat primary hepatocyte cultures at the molecular level, indicating that these models reproduce 
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key pathways in response to chemical stress. These findings expand our understanding and 

interpretation of toxicogenomics data from human hepatocytes exposed to environmental 

toxicants. 
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INTRODUCTION 

Humans are exposed to a variety of toxic chemicals and have access to a wide array of drugs 

each of which have the potential to cause short and long-term adverse effects including 

lethality. From an environmental health perspective, it is important to find a strong connection 

between toxic substances and human disease susceptibility, therefore elucidating molecular 

mechanisms of toxicity. 

Although animal models are currently the gold standard in evaluating risk and predicting 

adverse human health effects, they require considerable time and resources, and also raise 

ethical issues. (Bissell et al. 2001; Greaves et al. 2004; Kola and Landis 2004; Metushi and 

Uetrecht 2014; Suter et al. 2011) reviewed in (Hebels et al. 2014). For these reasons, several 

efforts have been made to minimize the use of animals in toxicology (http://www.alttox.org) 

and to develop robust in vitro models predictive of toxicity in human (Abbott 2005). A 

European initiative, the REACH (Registration, Evaluation, Authorization and Restriction of 

chemicals) legislation, suggests the use of high-throughput “omics” technologies, such as 

genome-wide gene expression profiling, to find alternatives to animal testing. The REACH 

legislation states: 

“The Commission, Member States, industry and other stakeholders should continue to 

contribute to the promotion of alternative test methods on an international and national level 

including computer supported methodologies, in vitro methodologies, as appropriate, those 

based on toxicogenomics, and other relevant methodologies” (REACH). 

Multiple studies used gene expression profiles to characterize toxicogenomic response 

(Ellinger-Ziegelbauer et al. 2008; Nuwaysir et al. 1999), as reviewed in (Afshari et al. 2011; 
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Chen et al. 2012). To confront chemical induced cellular stress, the biological system executes 

a transcriptional control over several signaling pathways (Grinberg et al. 2014; Kier et al. 

2004). Because the liver plays a primordial role in detoxification and is a major site of frequent 

chemical-induced injuries, it was extensively studied in toxicogenomics. Recently, the Japanese 

government and the pharmaceutical industry joined forces to create and make publicly 

available the largest toxicogenomic database to date: the Toxicogenomics Project-Genomics 

Assisted Toxicity Evaluation system (TG-GATEs) (Uehara et al. 2010; Uehara et al. 2011). 

The TG-GATEs consortium tested approximately 150 chemicals in different models, including 

primary human and rat hepatocytes as well as rat liver and kidney in vivo models (Uehara et al. 

2010; Uehara et al. 2011). The experimental design and gene expression profiles were made 

publicly available through the EBI ArrayExpress database http://www.ebi.ac.uk/arrayexpress/  

(Brazma et al. 2003). Different studies used this large toxicogenomic dataset to identify 

predictive biomarkers of hepatocarcinogenicity (Caiment et al. 2014; Yamada et al. 2012), 

phospholipidosis (Hirode et al. 2008), and coagulopathy (Hirode 2008). However, despite the 

availability of these valuable data, it remains unclear whether animal studies could be 

efficiently replaced by in vitro testing to identify key biological pathways induced by 

hepatotoxic chemicals, one of the main challenges of toxicogenomics. 

In this study, we performed a large-scale comparative analysis of the TG-GATEs data from rat 

liver samples (referred to as RLV) and from cultured rat and human primary hepatocytes 

(referred to as PRH and PHH) in order to (i) identify conserved transcriptional responses 

induced by chemicals across species and between in vitro and in vivo systems, and (ii) 

characterize the early response pathways linked to toxicity in both rat in vivo and rat/human in 

vitro experiments. Building upon the recent study of Iskar et al. (Iskar et al. 2013) showing that 



Environ Health Perspect DOI: 10.1289/ehp.1409157 
Advance Publication: Not Copyedited 

 7 

drugs affected modules of co-expressed genes conserved across a small set of three human 

cancer cell lines and rat liver samples, we developed a new pathway-based approach that 

combined gene set enrichment analysis (GSEA) and biclustering to efficiently integrate large-

scale toxicogenomic data across different species. Our analysis showed that chemicals affect a 

set of conserved pathways linked to chemical-induced toxicity across species and experimental 

platforms. 

MATERIAL AND METHODS 

The overall design of our analysis is represented in Figure 1. The three experimental settings 

that we investigated in TG-GATEs are rat liver in vivo, rat and human primary hepatocyte in 

vitro and are referred to as RLV, PRH and PHH, respectively. 

Microarrays retrieval and preparation 

Rat liver, primary rat and human hepatocytes microarray data files were downloaded from 

ArrayExpress. The three studies with the accessions E-MTAB-799, E-MTAB-798, and E-

MTAB-797 contain toxicogenomic data for rat liver in vivo (RLV), cultured primary human 

hepatocytes (PRH), cultured primary human hepatocytes (PHH) and experiments, respectively, 

for more than 100 chemical compounds (Figure 1A). PHH and PRH were treated with each 

compound in duplicates, using three increasing doses (low, middle and high doses) for three 

different amounts of time (2, 8 and 24 hours; Figure 1A). Rat liver samples were obtained from 

animals treated with each compound in triplicates and sacrificed at 3, 6, 9 and 24 hours after 

dosing (Figure 1A). The highest dose refers to the maximally tolerated dose. Each compound is 

associated with a corresponding vehicle control for all experimental conditions. 
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All CEL files (Affymetrix data format that contains the raw intensity values for both perfect 

match and mismatch probes) were checked for duplicated names and inconsistencies. For 71 

chemicals, it was noted that the data from human hepatocytes treated with a low dose of 

compound was missing; these 71 chemicals were nevertheless retained and analyzed with the 

other 48 chemicals. In total, the transcriptional effects of 119 chemicals on human hepatocytes 

were gathered from 2,004 microarrays (Affymetrix GeneChip Human Genome U133 Plus 2.0 

platform). Similarly, the effects of 129 chemicals on rat liver samples and rat hepatocytes were 

deduced from 6,192 and 3,096 microarrays, respectively (Affymetrix GeneChip Rat Genome 

230_2.0) (Figure 1B). All datasets, including  kidney samples in E-MTAB-799 and the 

repeated dose study (accession E-MTAB-800), are downloaded and curated on the fly through 

our fully automated pipeline. Documented code is available on GitHub 

(https://github.com/bhklab/TGGATES). 

Gene expression data 

Gene expression data were normalized with the robust multi-array average algorithm (RMA) 

(Irizarry et al. 2003) using the Bioconductor package BufferedMatrixMethods (version 1.30.0) 

(Gautier et al. 2004). Probes were mapped to Entrez Gene IDs using the Bioconductor 

annotation packages hgu133plus2.db (version 3.0.0) and rat2302.db (version 3.0.0) for human 

and rat, respectively. In case of multiple probes mapped to the same Entrez Gene ID, we used 

the Bioconductor package genefu (version 1.15.0) to select the most variant probeset for each 

gene. This procedure yielded 20,590 and 14,462 unique genes for human and rat, respectively. 
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Pathway collections 

Every gene in the curated microarray experiments in TG-GATEs was assigned to pathways 

described in the Reactome database (Croft et al. 2014) using the Bioconductor package 

BiomaRt (version 2.22.0), for both rat and human genes present in the microarray platform. 

Pathway collection was performed on March 5, 2014. We subsequently selected the common 

pathways for rat and human, and retained only gene sets of sizes between 15 and 500 genes, 

which resulted in 419 common Reactome pathways for the GSEA analysis (Supplemental 

Material, Figure S1). For reproducibility, all curated pathways were stored in gmt files 

provided in https://github.com/bhklab/TGGATES. 

Gene-chemical associations 

Gene ranking was based on gene-chemical associations, which were identified by fitting linear 

models to estimate the effect of chemical dosage on gene expression levels controlled by 

treatment time and interaction between dosage and time. For each pair of gene i and chemical j, 

we used the following model 

Gi=β0+β1D j+β2T j+β3Dj T j       (Equation 1) 

where Gi denotes the expression value of gene i, Dj is the dose of chemical j, Tj is the treatment 

time with chemical j, β0 is the intercept, β1, β2, and β3 are the regression coefficients for the 

chemical dosage, treatment time, and interaction term of dose and treatment, respectively. The 

strength of the linear gene-chemical association is given by β1 and its significance (p) is 

computed using Student t test as provided by the lm() function in the R stats package (Team 

2013). 
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Pathway-chemical associations 

Pathways that are significantly perturbed by each chemical were identified using the java 

implementation of GSEA (Subramanian et al. 2005) (version 2.0.14) provided by the Broad 

Institute. For each chemical, we first ranked all genes with respect to the signed significance of 

their gene-chemical association, that is sign(β1) * –log10(p) as in (Equation 1). We then used 

each chemical-specific ranked list of genes to perform a pre-ranked GSEA to calculate 

normalized enrichment scores (NES) for all common pathways between human and rat. The 

higher the absolute value of NES, the more enriched is the corresponding pathway in genes 

whose expression is significantly perturbed by the chemical of interest. We repeated this 

process for each chemical and created an “enrichment matrix” with pathway enrichment scores 

in rows and chemicals in column for each dataset (Figure 1B).  

Conserved transcriptional modules   

One hundred and fifteen chemical compounds were common to all three experimental settings 

(Figure 1B and Supplemental Material, List of Common Chemicals). For each of these datasets, 

we applied a biclustering method, that is the iterative signature algorithm (ISA) (Bergmann et 

al. 2003) implemented in the R package isa2 (version 0.3.3) (Csardi et al. 2010), on the 

enrichment matrix to simultaneously identify similar biochemical-induced transcriptional 

response patterns. The ISA algorithm runs with all combinations of threshold values on rows 

and columns, as described in details on the companion website 

(https://www.pmgenomics.ca/bhklab/pubs/tggates). Similarly to (Iskar et al. 2013) we merged 

modules with similar set of pathways using function isa.unique() in the isa2 package to filter 

redundant modules using a correlation limit of 0.5 to determine redundant biclusters. Lastly, 

modules sharing common sets of pathways and chemical across the different datasets -- namely 
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RLV, PRH, and PHH (inter-dataset similarity) -- were identified using a one-sided 

hypergeometric test (p < 1E-3); this technique is referred to as the reciprocal best-hit approach 

(Iskar et al. 2013). 

Reproducible research 

To ensure full reproducibility, this work complies with the guidelines proposed by Robert 

Gentleman (Gentleman 2005) in terms of availability of the code and reproducibility of results 

and figures. The procedure to properly set up the software environment and run our analysis 

pipeline is provided in Supplemental Material, Reproducibility of analysis. The analysis code is 

also publicly available on https://github.com/bhklab/TGGATES. 

RESULTS 

The approach we used to investigate the pathways altered by chemical perturbations leverages 

the transcriptional profiling data available in TG-GATEs for rat liver in vivo (RLV) and for rat 

and human primary hepatocytes cultured in vitro (PRH and PHH, respectively), as summarized 

in Figure 1A. We analyzed each of these three datasets separately and compared the results 

from the in vitro treated hepatocytes (PRH and PHH) to those from the liver of treated rats 

(RLV), as this animal model is considered the gold standard in toxicity studies. Pre-processing 

of these gene expression datasets yielded a set of 20,590 and 14,460 unique genes from the 

human and rat microarray platforms, respectively, that were kept for subsequent analysis. The 

association between gene expression levels and the 115 chemicals common across the three 

TG-GATEs experimental settings (PRH, PHH, and RLV) was then investigated at the pathway-

level using the pre-ranked version of gene set enrichment analysis (GSEA) (Subramanian et al. 

2005). This was done with 419 pathways, which were in common between rat and human 



Environ Health Perspect DOI: 10.1289/ehp.1409157 
Advance Publication: Not Copyedited 

 12 

organisms as queried from Reactome database, in order to identify modulated pathways upon 

chemical perturbation (Supplemental Material, Figure S1). Matrices containing the enrichment 

scores of each pathway perturbed by each chemical were then analyzed using an unsupervised 

biclustering technique called Iterative Signature Algorithm (ISA) (Bergmann et al. 2003) to 

define functional modules (i.e., clusters of pathways) that are specifically associated with 

diverse chemical treatments. Each module is given a summary name, that is a Reactome parent 

term that best recapitulates the pathways enriched in this module (see Supplemental Material, 

Table 1). 

Conservation of transcriptional modules across experimental settings 

Rat liver in vivo (RLV) treated with a single dose: Twenty-four non-redundant modules were 

identified using the aforementioned ISA analysis (p < 1E-3). These modules were enriched for 

the following biological pathways: neuronal system, hemostasis, cell cycle checkpoints, DNA 

repair, mitosis, lysosomes disorders, innate immune system, NOTCH, TGF-βR/SMAD and 

PI3K/AKT signalling cascades, lipid metabolism, and mitochondrion dependant processes. The 

summary names of all modules are provided in Supplemental Material, Table 1.  

Primary Rat hepatocytes (PRH) vs. Rat Liver in Vivo (RLV): The ISA algorithm detected 

eighteen modules in PRH. Interestingly, seventeen modules overlapped with RLV using a 

reciprocal best-hit approach in which two modules are considered as conserved if their 

Reactome pathways significantly overlap (Iskar et al. 2013) (hypergeometric, p <1E-3). Only 

one module related to cholesterol biosynthesis did not overlap at the considered cutoff. Figure 2 

shows in detail the number of non-redundant ISA modules in each dataset and the conservation 

across the experimental settings. 
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Primary human hepatocytes (PHH) vs. Rat Liver in Vivo (RLV): ISA analysis resulted in the 

identification of fifteen modules in PHH toxicogenomic data. Again, fourteen of them 

overlapped with RLV (hypergeometric, p <1E-3; Figure 2).  

Overall, we identified thirteen modules to be conserved across the three experimental setting 

datasets (RLV, PHH, and PRH). (Supplemental Material, Table 1 ; Figure 2). As a 

representative example, we show a conserved module in Figure 3. It is enriched for components 

of the innate immune system, with the overlapping pathways in the same order for both RLV, 

PHH and PRH. We extracted the union of the genes that were found to contribute to the 

enrichment score (referred to as leading edge; (Subramanian et al. 2005)) of at least one 

pathway for all chemicals in the module. From this, we obtained a list of common genes that 

are activated or repressed by chemical stress in RLV, PRH and PHH (Heatmaps for all ISA 

settings, lists of hypergeometric p-values, and lists of leading edge genes are provided in 

separate Supplemental Material files S2, S3, S4). 

Enrichment for hepatocarcinogens 

The approach described above identified thirteen modules that are associated with the early 

response of hepatocytes to diverse chemicals and are conserved in vivo, in vitro and between rat 

and humans. To test if some modules were significantly associated with the hepatocyte 

response to known hepatocarcinogens, we investigated twenty five previously validated rat 

hepatocarcinogens (Yamada et al. 2012) present among the 115 chemicals investigated in our 

study (Supplemental Material, List of common chemicals). Specifically, these 

hepatocarcinogens were significantly enriched in the NOTCH and TGF-βR/SMAD signaling 

modules in PHH (hypergeometric p < 0.05), but not in PRH or RLV. The TGF-βR/SMAD 
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signaling module (Figure 4A) in PHH was enriched for known environmental toxicants and 

carcinogens (e.g., ethionine, thioacetamide, coumarin, ethanol, acetamidofluorene, 

nitrosodiethylamine). None of these modules was enriched for hepatocarcinogens in RLV and 

this was only the case for the PI3K/AKT (Phosphoinositide 3-kinase) module in PRH (p = 

0.049; see Supplemental Material). The known rat hepatocarcinogens were also significantly 

associated with the neuronal system/G protein-coupled receptors (GPCRs) module in both RLV 

and PHH, but not PRH, probably reflecting the pleiotropic roles that GPCRs play in many 

cellular processes, including chemical carcinogenesis (see Supplemental Material S2 and S3).  

As a control experiment, we selected twelve non-carcinogenic compounds (Supplemental 

Material, List of common chemicals), and determined if they were significantly associated with 

any of the modules in RLV, PRH and PHH. As anticipated, no enrichment was observed, 

especially for those modules enriched for known hepatocarcinogens in PHH. As an additional 

control, we ascertained that the NOTCH and TGF-βR/SMAD modules were indeed enriched in 

cancer-related pathways; this was done by showing that the 20 pathways containing the word 

“Cancer” in the Reactome common dataset (over a total of 419 pathways) were in fact enriched 

in those modules (hypergeometric, p < 1E-3). This was not the case for any of the remaining 

modules without cancer terms. Collectively, the results presented above support that primary 

human hepatocytes can detect potential environmental chemical carcinogens (Figure 4A). By 

extension, we infer that the other modules are also enriched in pathways that are pertinent to 

chemical exposure.  

Activation of the Peroxisome proliferator activated-receptor alpha (PPARalpha) 

Since some PPARalpha activators are known to induce hepatocarcinogenesis in rodents’ liver, 

we tested if PPARalpha activators (e.g. benziodarone, benzbromarone, fenofibrate, clofibrate, 
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ibuprofen, WY14643, and gemfibrozil) were randomly distributed across modules in RLV, 

PHH and PRH. Interestingly, none of the modules in PHH or PRH were enriched for those 

drugs, however we found that a module unique to RLV was significantly associated with the 

regulation of lipid metabolism by PPARalpha and enriched for those drugs (p = 0.014). Other 

PPARalpha potential inducers were found in this module including non-steroidal anti-

inflammatory (NSAIDs) and anti-tuberculosis drugs (Figure 4B).  

A recent study (Grinberg et al. 2014) showed that numerous compounds from TG-GATEs 

cause ”stereotypical” transcriptional responses in PHH. Such definition is given when a 

cytotoxic concentration of numerous compounds caused a consensus expression response 

regardless of the chemical class of compound. We assessed the significance of the overlap, for 

each module, between all leading edge genes, which we generated from the biclustering in 

PHH, and the deregulated genes by at least 20 compounds in their study. We demonstrated that 

“stereotypical” clusters of genes, involved in liver metabolic functions and cell proliferation, 

were enriched in two modules from PHH, mainly those associated with normal liver function 

and DNA synthesis modules. Furthermore, to ascertain that our observations from PHH are not 

simply experimental artefacts due to in vitro conditions, we selected liver cirrhosis as a case 

study and tested the enrichment for genes associated exclusively with liver cirrhosis in PHH 

(Grinberg et al. 2014). Interestingly, the transforming growth factor beta-receptor signaling 

module in PHH (TGF-βR, module 6) was significantly enriched for genes linked to liver 

cirrhosis besides being induced by known hepatocarcinogens and environmental toxicants 

(Figure 4B). 

Finally, we showed that the distribution of genes perturbed by rat hepatocarcinogens vs. non-

hepatocarcinogens was alike (see Supplemental Material, Figure S2). 
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DISCUSSION 

We tested the extent to which transcriptional responses associated with liver toxicity can be 

recapitulated across human and rat and between in vivo and in vitro settings. To do so, we 

exploited the toxicogenomic information generated by the TG-GATEs project, from liver 

samples of rats treated with different chemicals and from rat/human hepatocytes exposed to the 

same compounds in vitro. To date, several studies have used TG-GATEs to build predictors of 

relevant toxicological endpoints. For example, Zhang et al. recently used this data to build a 

predictive gene signature for both hepatotoxicity and nephrotoxicity (Zhang et al. 2014). 

Interestingly, this study revealed the importance of early response genes in triggering toxicity-

associated signalling networks, as highlighted by the high predictive power of the signature 

derived from a treatment period of less than 24 hours.  

To our knowledge, our study is the first analysis of the TG-GATEs data comparing the 

functional changes - in the form of transcriptional responses - that are induced by a large panel 

of chemicals in vivo (rat liver), in vitro (cultured hepatocytes) and between species (human vs. 

rat). A main feature of our approach is the fact that it relies on a pathway enrichment analysis, 

thus allowing comparison to be made between species without having to rely on the limited 

subset of orthologous genes. In this context, it is worth contrasting our findings to those of 

Iskar et al. (Iskar et al. 2013), who identified, solely based on a orthologous genes, 

transcriptional modules that were conserved between rat liver (Natsoulis et al. 2008) and three 

human cancer cell lines from the Connectivity Map (CMap) (Lamb et al. 2006). Their findings 

showed that 15% of the chemical-induced modules were conserved across cell lines and 

species. However, this approach was limited to 8,962 genes in CMap, which corresponded to 

only 3,618 orthologous genes available for the rat liver experiments. To overcome this 
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limitation, by focusing on common pathways between species, our approach enabled a full 

exploration of the TG-GATEs datasets and the identification of functional pathways altered by 

chemical treatments in both rat and human. 

Our results indicate that the response of hepatocytes to chemical insults is analogous in vitro, in 

vivo, and across human and rat in that it involves a conserved set of cellular pathways. 

Specifically, we identified thirteen highly conserved modules representative of the early 

response of hepatocytes to chemical exposure. Two of those are enriched in key signalling 

pathways associated with cancer, namely the transforming growth factor beta receptor 

superfamily module (TGF-βR -mod17 RLV) the NOTCH signaling module (NOTCH-mod6 

RLV). Given the role that the TGF-βR and NOTCH pathways play in response to early toxicity 

(Zhang et al. 2014) and in maintaining normal liver functions (Morell and Strazzabosco 2014), 

respectively, it was not surprising that these modules were enriched for known rat 

hepatocarcinogens including environmental toxicants. What could be more puzzling, according 

to our results, is the fact that these two pathways are significantly associated with 

hepatocarcinogens only in human and not in rat. This may reflect a key difference in how both 

species deal with these chemicals. That the response of rats and humans may differ for some 

chemicals is also supported by our finding that the PPARalpha agonists clofibrate, fenofibrate, 

gemfibrozil, benziodarone, and benzbromarone up-regulate pathways associated with 

PPARalpha activation only in rat liver, thus providing a potential mechanism underlying the 

hepatocarcinogenicity of these drugs in rats but not humans (Lai 2004).  

Several lines of evidence suggest that the modules identified in this study are relevant to how 

hepatocytes respond to chemicals. For example, one of the modules we identified, the innate 

immune system (mod2 RLV), was enriched in pro-inflammatory Toll-like receptor signalling 
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pathways, which have been shown by Huang et al. to be good predictors of drug induced liver 

injury (Huang et al. 2010). Our results are also consistent with those reported in the 

comparative studies of Doktorova et al., who assessed the transcriptional profiles of toxicants 

between rat liver and a panel of in vitro models (Doktorova et al. 2012; Doktorova et al. 2013). 

Those studies assigned deregulated genes from in vivo/in vitro comparison. Moreover, we 

found that pathways associated with G protein-coupled receptors (GPCRs) and the neuronal 

system were consistently affected by a variety of chemicals. Of particular relevance is the fact 

that some chemicals found in this conserved module (neuronal system-mod8 RLV) can cause 

the potentially lethal long QT syndrome (delayed repolarization of the heart) by perturbing 

heart conductance. For example, ciprofloxacin, haloperidol, thioridazine, quinidine, and 

amiodarone are well known to prolong the QT interval and cause Torsades de Pointes, a deadly 

form of arrhythmia (Fazio et al. 2013). This module was also enriched for known rat 

hepatocarcinogens in RLV and PHH but not PRH, a finding that may relate to the fact that ion 

channels, in addition to being involved in the long QT syndrome, can also play a role in 

carcinogenesis (Babcock and Li 2013). However, this observation might not be specific to a 

class of compounds since the Reactome pathways related to the neuronal system contain a large 

number of genes (> 500). Our findings also suggest that some chemicals modulate pathways 

associated with vitamin metabolism (metabolism of vitamins and cofactors-mod3 in RLV) in 

hepatocytes, in particular those associated with the inherited metabolic disorders ethylmalonic 

aciduria and homocystinuria. Surprisingly, the scientific literature contains only a few reports 

pertaining to the association between chemical-induced liver injury and vitamins. Amongst the 

studies that we found relevant to this work, one describes an association between high levels of 

circulating cobalamin (vitamin B12) and several serious liver diseases (Ermens et al. 2003), 



Environ Health Perspect DOI: 10.1289/ehp.1409157 
Advance Publication: Not Copyedited 

 19 

while the other highlights the role of vitamin B12 metabolism in Methylmalonic aciduria, a 

disorder that can lead to severe liver injury and require in some cases a liver transplantation 

(Hansen and Horslen 2008). Given the strong association between vitamin metabolism and 

early drug exposure revealed in our study, it may be of interest to explore further this 

understudied area of research. 

Furthermore, we further confirmed the biological relevance of our biclusters against a recent 

study (Grinberg et al. 2014). Indeed, we showed that our modules recapitulated stereotypic 

response to chemicals as well as compound-specific perturbations. Moreover, we found 

evidence that the TGF-β receptor signalling module in PHH could act as a potential biomarker 

of chemical injury that may lead to liver cirrhosis besides being enriched for known 

hepatocarcinogens. 

It is worth mentioning that our new bioinformatics pipeline complements previous approaches, 

used to elucidate the mechanisms of chemical toxicity in vitro or in vivo, by enabling efficient 

and unbiased exploration of chemical-induced transcriptional changes in both in vivo and in 

vitro systems, and across different species. The modules that emerged from this analysis 

suggest that functional networks of xenobiotic detoxification and response to external stress are 

highly conserved in the hepatic system across human and rat. In contrast to pathway 

conservation, our results suggest that the chemicals associated with any given module, do not 

show a meaningful overlap between in vitro and in vivo systems or across species. Although 

somewhat counter-intuitive, this has been observed previously (Zhang et al. 2014) and may 

reflect bona fide differences in chemical bioactivation through metabolism between systems, 

thus complicating the interpretation of in vivo versus in vitro data. Another factor to consider 

when assessing the value of our approach is the fact that it relied on an expert knowledge 
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curated, peer-reviewed database of functional pathways. While it provided an alternative 

resolution for the orthologous gene limitation, we are nevertheless aware that annotations in 

pathway databases are incomplete and thus may limit this approach to some extent. Some of 

these limitations may be addressed in the future as we extend our approach to other systems 

(e.g., HepG2 hepatocellular carcinoma cell line), other toxicogenomic databases, such as 

DrugMatrix (Natsoulis et al. 2008), and integrate more 'omics' data including RNA-seq, and 

SNP profiling to take into account the variability of individual response to chemicals.  

CONCLUSION 

The analysis of the TG-GATEs data presented here indicates that toxicogenomics-based 

cellular models recapitulate most of the pathways related to chemical-induced injury in rat 

liver. Furthermore, it may be possible to reduce unnecessary animal testing in early 

toxicological assessments and complement them with in vitro testing. Because environmental 

toxicants can be associated with alterations in cellular pathways that contribute to general 

injury patterns and likely more severe phenotypes including carcinogenesis, we showed that the 

TGF-βR/SMAD module could serve as a putative biomarker to identify chemicals with 

carcinogenic potential for humans. Especially that potent carcinogenic compounds such as 2-

acetamidofluorene, nitrosodiethylamine and ethanol were found in this module in PHH.  

Our findings could be generalized to study a large set of environmental contaminants relevant 

to human health. Therefore, our method helps identify numerous pathways and genes that are 

responsible of toxicity controlled by chemical exposures.  
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FIGURE LEGENDS 

Figure 1: Analysis workflow for the TG-GATEs dataset. (A) Overview of the TG-GATEs 

experimental design. TG-GATEs includes rat liver in vivo (RLV), rat hepatocytes in vitro 

(PRH), and human hepatocytes in vitro (PHH) experiments to test transcriptional responses for 

more than 100 chemical compounds. Samples have been treated with chemical with three doses 

along with a control group, and gene expression was measured repeatedly within 24 hours as 

shown. (B) Pathway-based analysis pipeline. A comparative analysis of the three TG-GATEs 

experiments was conducted by investigating chemical-induced pathways in RLV, PRH and 

PHH. For each chemical, a linear regression model was fitted for every gene to assess the effect 

of chemicals on gene expression levels taking into account treatment period and dose level. 

Based on these association models, genes were ranked to perform a gene set enrichment 

analysis (GSEA) on common Reactome pathways. From the enrichment results transcriptional 

modules conserved across experimental settings (RLV, PRH, and PHH) were identified by bi-

clustering. 

Figure 2:  The number of non–redundant transcriptional modules and proportions 

identified for each and across all experimental settings in TG-GATEs. Each bar 

corresponds to an experimental setting in TG-GATEs (RLV, PRH, PHH) and contains the 

number of modules found to be unique for the experiment (blue) or show a corresponding 

module in another experiment (see color legend: Green for conserved, grey for conserved in 

RLV vs. PHH, orange for conserved in PHH vs. PRH, yellow for conserved in RLV vs. PRH). 

While only few modules were detected in only one or two settings, most modules showed 

significantly high overlap in terms of pathway enrichment between all settings (hypergeometric 

p < 1E-3).  

Figure 3: Conservation of modules across in vitro and in vivo settings based on Reactome 

pathways. This example summarizes a conserved module between RLV, PRH and PHH, 

shown as heatmaps and keeping overlapping pathways colored with respect to their enrichment 

scores: up-regulated pathways are shown in blue and down-regulated are shown green. Three 

heatmaps corresponding to a conserved module associated with the innate immune system 

(mod2 in RLV, mod15 in PHH and mod10 in PRH). The leading edge genes from common 
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pathways, and activated or repressed by chemicals are shown under the heatmap with known 

oncogene colored in red. (More details in Supplemental Material S2 and S4).  

Figure 4: Characterization of putative biomarkers within chemical-induced modules. (A) 

Heatmap representing a module in PHH (mod6), associated with the transforming growth 

factor beta receptor signalling that can be considered as a candidate biomarker in humans for 

environmental exposure to known toxicants. Diverse rat hepatocarcinogens were enriched in 

this module. (B) Heatmap representing a module in RLV (mod5) that was relevant to toxicity 

mode of action.  It is enriched for a class of lipid lowering drugs known as fibrates. These 

drugs are rat hepatocarcinogens and activate the peroxisome proliferation-activated receptor 

alpha (PPARA). Drugs that activate PPAR pathways include non-steroidal anti-inflammatory 

and anti-tuberculosis drugs. All statistical details and genes contributing to those pathways are 

found in Supplemental Material S4. 
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Figure 1. 
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Figure 2. 

0%

25%

50%

75%

100%

PHH PRH RLV

P
ro

p
o

r
ti
o

n
 o

f 
m

o
d

u
le

s

Modules

Conserved

PHH vs. RLV

PRH vs. PHH

RLV vs. PRH

Unique

13 1313

5

1

1

4

4

2

2



Environ Health Perspect DOI: 10.1289/ehp.1409157 
Advance Publication: Not Copyedited 

 29 

Figure 3. 
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Figure 4. 
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